
International Journal of Theoretical Physics, Vol. 19, No. 5, 1980 

Space-Time and Spatial Geodesics on a Rotating 
Sphere 

K. McFarlane,  N.  C. McGil l ,  and I. H.  M c K e n n a  

Department of Theoretical Physics, University of St. Andrews, St. Andrews, Fife, 
Scotland 

Received December 18, 1979 

The motion of free particles and photons constrained to lie on the surface of a 
rotating sphere is analyzed. Formulas are presented for the surface area and 
volume of the sphere, the velocity components of free particles and photons, the 
time of flight between fixed reference points on the sphere, and the spatial 
distance along null geodesics. Spatial geodesics are also investigated and it is 
shown that there are many solutions of the geodesic equation joining any two 
fixed points. A description is given of a curved two-dimensional surface 
embedded in three-dimensional Euclidean space which has the same intrinsic 
spatial geometry as the rotating sphere. 

1. I N T R O D U C T I O N  

Since the earliest days of relativity theory, its applicat ion to rotat ing 
systems has been of  special interest. Rota t ing  systems provide some of the 
simplest examples of  accelerated frames of reference, and thereby serve as 
a proving ground  for the postulates and  mach inery  of general relativity in 
the absence of pe rmanen t  gravitat ional  fields. For  a review of  papers 
published before 1962, see Arzeli~s (1966); for more  recent  information,  
see for  example Atwater  (1970), McCrea  (1971), G r i n  (1975), Browne 
(1977), McFar lane  and  McGil l  (1978, to be referred to hereinafter as M M )  
and  references therein. 

In  practice the great  majori ty of  previously published papers in this 
field have concentra ted  on the problem of the rotat ing disk. This m a y  be 
because almost  all the interest in mos t  problems involving rotat ion con- 
cerns the two spatial dimensions normal  to the axis of rotation, while 
hardly  any  interest at taches to the third spatial dimension. For  a com-  
pletely free particle, for example, the mot ion  in the direction parallel to the 
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axis of rotation is especially simple, and there is hardly any loss in 
neglecting it altogether. 

There is, however, another class of problem which does not seem to 
have received any great attention so far, i.e., where the particles or light 
rays in question are constrained to lie on the surface of some rotating 
geometrical object. Probably the simplest and most interesting example is a 
rotating sphere, which is the subject of this paper, though we are currently 
examining other examples. Thus we shall investigate here the spatial 
geometry of a rotating spherical surface and the paths (in space-time) of 
free particles and photons moving thereon. Physically, it is easy to imagine 
how the necessary constraint could be imposed on a particle; while a light 
ray satisfying the given geometrical condition could be obtained by send- 
ing out a light pulse close to and tangential to the inner, perfectly reflecting 
surface of a hollow sphere. 

Though some of the results are quite similar in form to those already 
derived in MM and elsewhere for a rotating disk, there are some major 
differences. First, a small rotating disk can always be regarded as part of a 
larger rotating disk with the same angular frequency, but the same cannot 
be said for rotating spherical s u r f a c e s .  Thus although it is as well to choose 
a disk whose size is limited only by the requirement that no part of it 
should move faster than light, the results for a sphere depend on the value 
assigned to its radius. Second, the geometry of a rotating disk is such that 
the spatial and space-time geodesics exhibit no periodic properties, 
whereas spherical geometry gives rise, as we shall see, to repeated orbits 
and multiple geodesic paths connecting fixed reference points. 

We shall begin by setting out some general kinematical relations 
between a uniformly rotating frame and a nonrotating frame, in spherical 
coordinates. In subsequent sections, by inserting r = a throughout we shall 
restrict consideration to a spherical surface and to events and paths that lie 
thereon. 

2. ELEMENTARY SPATIAL AND TEMPORAL RELATIONS 

We assume that space-time is flat, and consider an inertial frame S in 
which referencepoints are identified by assigning values to spherical polar 
coordinates (7, 0,~). the origin of coordinates being arbitrary. If t denotes 
time measured in S, the invariant space-time interval can be expressed as 

d s  2 = d t  -2 - c - 2(d72 + 72 dO2 + 72 sin 2/7d~2) (2.1) 

Now consider the coordinate transformation 

7--- r, 0~- 0, ~-~ q~ + tot, t =  t (2.2) 
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In terms of the new coordinates (r, 0, q~, t), 

ds 2 _- dt2(1 - to2r2sin20/c2 ) 

- c-2(dr2+ r2dO 2 + r2sinEOd~? 2 + 2torEsin2Odepdt) (2.3) 

We note from the transformation (2.2) that the reference point (r, 0, q~) is 
described in the inertial frame S as rotating about the polar axis with 
constant angular velocity to. Thus the reference system that is the set of all 
reference points (r,O, qJ) for which r <a ,  say, may be identified, provided 
t o a / c < l ,  with a.sphere of radius a whose center is at r = 0  and which 
rotates with angular velocity to about the polar axis. It should be noted that 
our sphere may thus be minimally regarded as merely a set of rotating 
point particles; it is not strictly necessary to assume that it be a material 
continuum endowed with mechanical properties. In this way we avoid the 
difficulties associated with Ehrenfest's paradox. 

We now apply the usual relativistic rule (Moller, 1952; Landau and 
Lifshitz, 1971) for the calculation of the distance dl between the neighbor- 
ing reference points (r,O, ep) and (r+dr ,  O+dO, ep+dep) measured in the 
rotating system. The result is 

dl2= dr2 + r2 d02 + r2sin2Oddp 2 (2.4) 
1 - t o 2 r 2  sin 2 8 / c  2 

We note that this equation implies length contraction in the q~ direction by 
the factor (1-to2rasin20/c2)l/2, as would be expected by a naive applica- 
tion of the special theory, but no contraction occurs in any direction 
normal to the local direction of motion. 

It is of interest to calculate from equation (2.4) the volume and 
surface area of the sphere. Defining a = toa/c, we have 

f~ f= ,- sinOamOao 
= ~r=~176176 =~ (1 --to2r2sin20/c2) l/2 

21ra 3 
- ct 3 [a--(l--a/)tanh-'oL] (2.5) 

S ( a ) =  fa[ ~% a2sinOdOdq~ = 41ra-----~2tanh-'a (2.6) 
0 (1 - -  Or2 s i n 2 0 ) 1 / 2  ot 

4 3 These expressions tend as expected to ~ ra  and 4,ra 2, respectively, as 
ot--~0, and in the extreme relativistic limit (a- >l) we note the curious result 
that V(1) -- 2r 3, but S(a)-->oo. 
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From equation (2.3), the time interval d'r between the events (r, 0, q,, t) 
and (r,O,q),t + dr) according to a standard clock at rest at the reference 
point (r, 0, q,) is 

dz = dS]d,= o = Y - i dt (2.7) 

where 

), -- ( 1 - o~2r 2 sin 2 0 / c  2) - 1/2 (2.8) 

which exhibits the expected time dilation for moving clocks. "Coordinate 
clocks" at rest in the rotating frame and marking the time t require to go 
fast by the factor 2/with respect to the corresponding standard clocks at 
the same place. 

As we have argued in MM, it is convenient, though not essential, to 
choose d~" as the infinitesimal time interval to be employed in the definition 
of velocity. If a particle moves from (r, 0, q), t) to (r + dr, O + dO, q) + dq), t + 
dt), we can define its instantaneous velocity (strictly, speed) as 

v = d l / d z  (2.9) 

where dl and d~- are given above. In particular, its velocity components in 
the r, O, and q) directions, respectively, are 

v, = " tdr ld t ,  v o = yrdOId t ,  % = y2rsinOdcp/dt  (2.10) 

The corresponding components in the inertial frame are 15 r = dF/d~  6 0 --- 
?dO/d t  and 6, = ? sinOdep/dt, and so we find from the coordinate transfor- 
mation equations that 

v,. = ),6 r, % = y6o, % = y2(rq, - w r s i n O )  (2.11) 

The speeds v and 6 in the two frames are related by 

v=*tz[  y-262 +w2r2sin20(l  + 6 ~ / c 2 ) - 2 w r s i n 0 6 ~ ]  '/2 (2.12) 

We note that the velocity transformation equations are asymmetrical as 
between the two reference frames. In particular, although the velocity 
components of a particle in the inertial frame can never exceed c, there is 
no such restriction in the rotating frame. 

As we shall see later, the velocity of light in the rotating frame turns 
out not to be equal to c, in general, so long as velocity is defined by 
equation (2.9); neither would it be so if we were to adopt the alternative 
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definition v = dl/dt.  It is possible to construct a time interval, in terms of 
dt and d~, for which the velocity of light is by construction equal to c; but, 
as Arzeli~s (1966) shows during the corresponding analysis for a rotating 
disk, the synchronization condition on clocks registering this new time is 
extremely artificial. 

3. TRAJECTORIES  OF FREE PARTICLES AND P H O T O N S  
ON A ROTATING SPHERICAL SURFACE 

We restrict consideration from now on to the spherical surface ? = r--  
a. The paths followed in space-time by free particles and photons con- 
strained to lie on this surface are given by the solutions to the appropriate 
geodesic equations. These equations, i.e., timelike for free particles and 
null for photons, may be expressed and solved in any convenient coordi- 
nate system, and the solution in any other coordinates may be obtained 
from the coordinate transformation equations. 

Here it is simplest to work with the inertial frame coordinates (/~,~, t-) 
and transform later to the rotating frame coordinates (O, ep, t). Setting ~= a 
and d?---0 in equation (2.1), the timelike geodesic equation in the form 

d [ dx~ ) 1 d xv dx~ 
- ~ g ~ ' ~ - ~ s  -ig~'~'~ ds ~ - = 0  (3.1) 

with x--- 1,2, 3, gives, after solution of the trivial differential equation for i, 

dZO sin ~ cost~ / d__~_ ]2 __ O, 
at -2 ~ ai ! 

m 

sinE0 d'/' = K (3.2) 
di 

Eliminating dep/dt, we find after two integrations that 

cos/~= cos 0 0 cos ~f /a  (3.3) 

where 0 0 is the minimum value of /~ attained during the motion, 6 is the 
(constant) speed of the particle (we assume throughout_that v ~ 0) and 
where, without any lack of generality, we t ake /~=6  0 at t = 0 .  If K ~ 0 ,  it 
satisfies the relation 

K= o(e/a)sinO o (3.4) 

where o= +1 ( - 1 )  for an orbit which makes ~ constantly increase 
(decrease) with time. We then find, on integrating the equation for dep/dt, 
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that 

s inOcos(~-%) =sinO o cose[//a (3.5a) 

sin ~ s i n ( 0 - % )  = sin oct-/a (3.5b) 

where % is the value of 0 at t = 0. If, however, K =  0, we have the singular 
solution 

cos 8= cos/St-//a, ~ - ~b o-- 0 or ~r (3.6) 

Results for photons are obtained simply by putting 6= c, or equivalently 
by solving the null geodesic equation. 

As expected, these equations describe analytically the trajectories of 
moving points following (at constant speed v-) great circle paths on the 
nonrotating spherical surface f =  a. This can be seen from application of 
the formulas for spherical triangles (Todhunter and Leathern, 1932) which 
are most conveniently expressed in the form 

cosa = cos/~ cos?+ sin/~ sin? cosA (3.7) 

sinti cosB = cos/~ s i n? -  sin/~ cos? cosA (3.8) 

sinti sinB=sin/~sinA (3.9) 

with A, B, and C denoting the three angles and ,~, /~, and ( the angular 
displacements along the opposite sides. Choosing the s_pherical triangle 
whose vertices are (8,~), (00,%) and the North pole (8--0), we see by 
setting A =_ ~r/2, B=e~-%,  ~= O, /~= or[/a and ?=O 0 that the equations 
for 0 and ep in (3.3) and (3.5) are immediately obtained. The motion repeats 
itself after each complete orbit of period 2rra/~, and the locus of points 
traced out is 

t an0cos(~-  %) = tan00 (3.10) 

The singular solution given by equation (3.6) corresponds to an orbit 
passing through the N and S poles. 

We now employ the coordinate transformation in (2.2) to find the 
corresponding solutions in the rotating frame coordinates (O,~, t). For the 
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general case we have 

cos O= cos Oo cos 6t / a (3.11) 

sin 0 cos(c? - c?o + o~t) = sin 0 o cos 6t / a (3.12a) 

sin 0 sin(C?- c?o + ~ot) = sin a6t/a (3.12b) 

there being no change in the meaning of 0 o and c?o. For the singular case of 
a polar orbit, the solution becomes 

cosO=cosrt/a, c ? - c ? 0 + ~ t = 0  or ~r (3.13) 

Inspection of these equations reveals that the principal effect of the 
rotation is to change the period in C? which corresponds to one complete 
oscillation in the 0 direction. The latter still takes a time 2r (as 
measured by coordinate clocks), and in this time C? changes by 2~r(o-  
~oa/v-'). It is easily seen that if ~a/~ is a rational number m/n  say, then 
after n complete cycles in the 0 direction (i.e., from 0 0 to qr -  0 0 and back, n 
times) the particle or photon returns to its original starting point and the 
motion repeats itself. The integer m is the number of rotations of the 
sphere with respect to the inertial frame during this time. If oaa/~ is not a 
rational number, the motion never repeats itself. 

The locus of points traced out is found by eliminating t from equa- 
tions (3.11) and (3.12). Distinguishing carefully between the two cases 
o = _+ 1, we obtain 

C?-C?o = - [ cos -X( t an0o / t an0 ) - ( a toa /6 )cos - l ( cos0 / cOS0o) ]  (3.14) 

in which it is essential to interpret cos - i  as the nonnegative multivalued 
function which is zero at 0 = 0 o and which continuously increases as the 
particle or photon moves around the sphere. A different locus is produced 
by changing the sign of o, for the same values of 0 0, c?o, and G in contrast 
to the independence of locus on o for a nonrotating sphere. 

The velocity components v 0 and v,  can now be evaluated by combin- 
ing equations (2.10), (3.11), and (3.12). We find 

vo= +__ 2,~(1 - sinZ0o/sin20)1/2, vq=T2(-wasinO+orsinOo/sinO) 

(3.15) 

where ,/ defined by equation (2.8) is of course evaluated at r =  a. The 
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(a) (b) 

(c) (d) 

Fig. 1. Space-time geodesic arcs joining the points A( O = ~r /3,,# = -~r/6) and B( O = ~r /3, ~k-- 
~r/6). The four eases are (a) A--->B(o= 1), ,,.,a/e=0.2, Co) B--->A(o=- 1), ,,,a/e=0.2, (c) 
A--*B(o--I), toa/~=0.8, and (d) B--->A(o=--I), toa/~=0.8. The lines of latitude and 
longitude are at 20 ~ and 22�89 ~ intervals, respectively. 

particle's speed in the rotat ing f rame is 

v = y 2 c { [ 1 - a ( g / c ) a s i n O o ] 2 - - y - 2 ( 1 - - g 2 / c 2 ) }  1/2 (3.16) 

These results are analogous to the corresponding relations for a rotat ing 
disk [MM equations (15), (16)]. In  particular, equat ion (3.16) with 6 - - c  
confirms that  the speed of light on  the rotat ing sphere is not, in general, 
equal to c. 
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We show in Figure 1, a -d ,  four examples of representations of 
space-time geodesic paths on the surface of a rotating sphere. These are 
possible trajectories of particles or photons passing in each direction 
(o-- _ l) between the fixed reference points 0 = ~,/3, q~ = - ~r/6, and 0 = 
r q~= ~,/6, for two different values of the parameter ~ a / ~ .  The ques- 
tion of how a trajectory is determined by the coordinates of two points 
lying on it is postponed to Section 4, but the following observations--on 
how to represent paths on a rotating sphere--are relevant at this stage. 

First, the geometry of the surface of a rotating sphere is inherently 
different from that of the surface of a nonrotating sphere, as equation (2.4) 
demonstrates and as we shall investigate in greater detail later. It will be 
appreciated, therefore, that any attempt to map the former surface onto 
the latter wilt not preserve all aspects of the surface geometry. Perhaps the 
most natural mapping is of the rotating sphere surface onto the surface of 
a nonrotating sphere by (0,~)---~(0'= 0,~' =~), where (0', ~') are spherical 
polar coordinates for the nonrotating sphere. In this representation, the 
trajectories of particle and geodesic arcs, regarded as sets of points (0,~), 
are faithfully preserved, but neither angles between trajectories nor dis- 
tances between points are faithfully recorded. Alternatively, one could 
construct a representation on a nonrotating sphere which preserves a single 
point on the trajectory, (00, ~o) say, and the local angle f between the arc 
and the concurrent line of longitude as defined by v o = v cos f , v ,  = v sin ~; 
but such a map will not, of course, preserve the coordinates (0,~) of 
individual points on the arc. These two representations are analogous to 
the two different representations of free particle and photon trajectories on 
the surface of a rotating disk discussed in MM. Actually, when a < 3- i /2  
we can in principle do better than either of these: we show in Section 7 
how to find a surface of revolution embedded in Euclidean 3-space which 
has the same  intrinsic geometry as that of a rotating sphere, and which 
therefore provides a possible representation of trajectories preserving all  

geometrical features such as points, angles, and distances. 
Second, it will usually be necessary to map in turn the intermediate 

nonrotating sphere or surface of revolution onto a Euclidean plane. This is 
a more conventional problem and will not be discussed here any further. 
In Figure 1, we have chosen the trajectory-preserving map onto the 
nonrotating sphere, followed by a stereographic projection of the sphere 
onto a Euclidean plane from the projection point r ' =  10a, 0 ' =  r ~ ' =  0. 
This arrangement, modified if required to allow for a different projection 
point, is probably the most convenient for the representation of particle 
and photon trajectories since, as equation (3.14) shows, each trajectory on 
such a map is determined by the value of the single parameter t o a / g  (in 
addition to 0 o, ~0, and o). By contrast the theoretically superior mapping 
involving an intermediate surface of revolution requires knowledge of the 
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individual values of a=toa/c and of 6/c, quite apart from the restriction 
to a < 3-1/2 

For convenience, we include in Figure 1 the projections of some lines 
of latitude and longitude, and we show in dotted form those sections of 
paths which lie on the "'far" side of the sphere. Two points of interest are 
illustrated in these pictures: (i) the tendency for o = - 1 orbits to lie closer 
to the equator than corresponding o = + 1 orbits, for a fixed choice of end 
points, and (ii) that dep/dt can sometimes (Figure lc) alternate in sign 
along a trajectory, unlike d~/d[ .  

4. TIME OF FLIGHT B E T W E E N  FIXED REFERENCE 
P O I N T S  

We begin by asking how long a free particle moving with speed 6 
would take to travel between two points (01,~i) and (02,~2) on the 
nonrotating spherical surface f =  a. The answer can be provided analyti- 
cally, starting from equations (3.3) and (3.5), but  the quickest procedure is 
to apply equation (3.7) to the spherical triangle whose vertices are (01,~l), 
(02,d?2) and the N pole (Figure 2). The great circle distance between the 
two end points on the trajectory must be 6(t- 2 - t- 0, where fl and t- 2 are the 
times at which the particle coincides with the end points. Letting A = $ 2 -  
~1, ci = 6(t 2 -  tO~a,/~= 01, ~ = 02, equation (3.7) yields 

cos~(i2-d)/a=cosOl cos02+ sin01sin02 cos (~2-~ l  ) (4.1) 

" N  

Pig. 2. Spherical triangles based on spatial path traced by a particle on the nonrotating 
sphere. N is the North pole and (00,~,o) is the point on the trajectory locally nearest the pole. 
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We deduce from the coordinate transformation (2.2) that the coordinate 
time taken (t 2 -  tl) for the same free particle to travel f rom (/91,~1) to 
(/92, q~2) on the surface of the rotating sphere satisfies 

cos6( t  2 -  t l ) /a - -cosO 1 cos02+ sinO~sinO 2 cos[~2-@, +w(t  2 -  tl) ] (4.2) 

For  some special cases, an analytic solution to this equation exists. 
Thus, when the first point is the N pole (/71 = 0), we have 

~(t 2 -- t l ) / a  =/92 + 2mr 

o r  

6 ( t 2 - t l ) / a =  -/92 +2(n  + 1)~r, n = 0 ,  1,2.. .  (4.3) 

where n is the integer part of the number of orbits traversed around the 
sphere by the particle before encountering the second point. Similar results 
emerge for the special cases 02 = 0, 01 = rr, or 82 = 7r; likewise, an equatorial 
orbit (01 = 02 = ~r/2) gives rise to equally simple solutions with an obvious 
physical interpretation. 

For  the general case, an analytic solution is not possible, but we can 
nevertheless make the following observations. First, interchange of the 
coordinates (Ol,t~l) and (02,@2) does not leave equation (4.2) unchanged. 
Thus, in general, the time taken to pass between two reference points A 
and B depends not only on ~3 and on where the reference points are located 
but also on the direction of travel (A--->B or B--->A). Second, if w a / 6  is a 
rational number, re~n, say, where m and n are positive integers, then 
t 2 - t I + n2rra/6 is a solution if t 2 -  t I is a solution. This corresponds to the 
case where the motion repeats itself after n orbits (in the /9 sense), as 
discussed in Section 3. Third, if I? is a solution to equation (4.2) for a fixed 
va lue o f  t 2 -  tl, so also is 6___ n2qra/(t 2 -  tl), where n =  1,2,3. . . ,  provided 
the latter does not exceed c or become negative. Physically this corre- 
sponds to the fact that there exists a lowest speed which a particle must 
have in order to pass from (/91,~1) to (/92,q~2) in time t 2 -  tl; but there are 
also faster particles which achieve the same end by adding on an integer 
number of extra orbits during the fixed time available. 

From equation (4.2) we see that, for any choice of ~1 and r the 
right-hand side has a minimum possible value of cos(/91+/92) and a 
maximum possible value of cos(/91 -/92). This implies that the allowed 
values of V ( t  2 - -  t l ) / a  must lie within a number of bands along the positive 
real axis. The first band runs from 102-011 to the smaller of /91+/92, 
2~r-/91 -/92; the extremities both correspond to polar orbits, the first of 
which involves no intersection with a pole during the time t 2 - -  t l ,  the 
second involving one intersection with the N pole (if/91 +/92 <~r) or the S 



358 McFarlane, McGill, and McKenna 

pole (if 01 +02>~r ). The second band runs from the greater of 01+02, 
2~r-8~-02 to 2~r-102-011, the first extremity corresponding to a polar 
orbit intersecting the N pole (if 01+02>~r ) or the S pole (if 81+82<~r) 
once, and the second to a polar orbit intersecting both poles once. The 
interpretation is similar for higher bands, which clearly correspond to 
longer and more complicated trajectories during the coordinate time inter- 
val t 2 - t 1. 

Figure 3 shows the relationship between 6 and t 2 -  tl, for the particu- 
lar choice 01 =~r/4, q~l = -  ~r/6 and 02=Ir/3, q~2=rr/6. The nondimen- 
sional variables used are/3 = 6 / t o a  and r = to(t 2 - t l) ,  and the figure exhibits 
some of the features discussed above. In particular, the branch of the 
multivalued function/3(r nearest the origin corresponds to the first band 
of allowed values for the product /3r the second nearest to the second 
band, and so on. Variation of dpl and q~2, for fixed 01 and 02, would cause 
systematic changes in the curves displayed, but always subject to the 
prohibition on/3r taking on any value in the forbidden regions between the 
allowed bands. 

It is interesting to observe that /3(r possesses stationary values for 
comparatively small values of/3.  This implies that, even within a single 
band, there is often more than one way in which a free particle with speed 

can go from (01, ~1) to (02, q~2), the various possibilities involving different 
initial directions of motion and transit times. It can be shown, however, by 
a calculation analogous to that carried out in MM for a rotating disk, that 
/3 has no stationary values for which/3 > 1. This implies that for a light ray, 
for which /3= c / t o a =  a - I ,  there is only one solution for t z -  t 1 in each 
band, for a given value of/3. Clearly the light ray solution for t 2 -  t I in the 
first band is the minimum possible time for a signal to pass from the first 
point to the second point. 

To conclude this section, we show how the orbit parameters 00, q%, 
and o may be determined, starting from knowledge of the end points 
(01, q~l), (02, ~2) and the particle velocity ft. Applying equation (3.9) to each 
of the two smaller spherical triangles in Figure 2, and combining the 
results with the coordinate transformation (2.2), we find 

sin O 1 sin 02 sin [ ~2 - ~ l + to(t2 - t l) ] 
sin0 o = (4.4) 

sin o~(t 2 -  q ) / a  

We can determine numerically the various allowed values of t 2 -  t 1 from 
equation (4.2), then substitute each in turn into (4.4) to find the corre- 
sponding values of 00 and (since the right-hand side must be nonnegative) 
of o. The choice of any one of the variables q, t 2, and @0 is to some extent 
arbitrary, since @0 is not uniquely determined by the condition that 0 
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assumes its minimum value at (00,~o)--unlike the case of a nonrotating 
sphere. Probably the most natural procedure is to set 0=  01, t =  tl, and 
0 = 02, t = t 2 in turn in equation (3.11) and to select--somewhat arbitrarily 
- - a  pair of solutions for t I and t 2 for which t 2 -  t 1 is equal to the chosen 
solution of (4.2). Then q~o can be calculated by solving equations (3.12a) 
and (3.12b), having first inserted (say) 0 --- 01, q~=q~t, t = t 1. This procedure 
was used in computing the orbits shown in Figure 1, all of which represent 
solutions lying in the first band for which the transit time between the 
chosen end points is least. 

5. SPATIAL DISTANCE ALONG NULL GEODESICS 

The spatial distance covered on the rotating sphere by a particle 
following a space-time geodesic--starting say from the point (O o, q~o)--may 
be calculated by integrating the spatial line element in equation (2.4) (with 
r=a,dr=O) along the locus described by equation (3.14). In practice, the 
required integral is fairly complicated and recourse must be made to 
numerical integration. For a photon, however, substitution of ~ = c leads to 
a much simpler integral following cancellation of terms, and we find 

l (0 )=  a ( 1 -  oa sinOo)fo~(1- a2sin20)-1/2(1-  sin2Oo/sin20)-'/2dO 

= a(1 - oa sin 8o)'/2(1 + aa sin 00)-'/2F(x[•) (5.1) 

where 

X=COS-l(cosS/cosSo), sin2t=acosSo(1-a2sin280) -1/2 (5.2) 

and F is the elliptic integral of the first kind, 

F(X[?,) = foX(1 - sin 22t sin 2 e#)-'/2 dq~ (5.3) 

This formula yields the distance from (0o, q~o) to any point on the null 
geodesic up to the first crossing of the equator. Clearly the distance to 
points further away than this is obtained by adding on multiples of l(r 
to _+l(0) or +_1(r Noting from equation (3.11) that X=ct/a, equa- 
tion (5.1) also provides the distance traveled on the rotating sphere by a 
photon in time t. 

It is interesting to note some special cases. For a polar orbit, 00=0 
and our result simplifies to l(O)=aF(Olsin-la). In particular, the distance 
between the N or S pole and the equator along a light ray is aF(Tr/2[ 
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sin-la),  which is of course greater than the minimum possible distance 
between them, i.e., ~ra/2.1 For an equatorial orbit (0 = 00= ~r/2), equation 
(5.1) is not applicable, but We can immediately integrate equation (2.4) to 
give l(q 0 ---- a(d~ -- d?o)(1 - -  o l 2 )  - 1/2. 

The distance between two fixed points (01, qh) and (02, ~2) along a light 
ray joining them is either l(00+l(02) or 1l(01)-l(02)1, depending on 
whether (0o, q'o) lies between them on the trajectory or not. In Section 4 we 
saw that each of the allowed values of t 2 - -  t l ,  and hence of 00, depends in 
general on the direction of the signal between the fixed end points as well 
as on their direction, and so it is sufficiently clear that this distance also 
depends, in general, on whether the light signal goes from (01, ~l) to (02,~2) 
or in the opposite direction. This conclusion is the same as in the corre- 
sponding analysis for the rotating disk (MM). 

6. SPATIAL GEODESICS 

Setting r = a in equation (2.4), the line element dl on the surface of a 
rotating sphere satisfies 

d12=a2(d02+ sin20d~ 2 ) 
1 - a 2 sin 20 

(6.1) 

Spatial geodesics, i.e., paths along which the distance between any two 
fixed points (within certain l imits--see below) is a minimum, are obtained 
by solving the geodesic equation (3.1) with ds replaced by dl and metric 
given by equation (6.1). With x =  1,2 in turn, we get 

d20 _ sinOcos____O0 ( de? ]2 dq, k(1 - a2sin20) (6.2) 

dl 2 ( 1 - a 2 s i n 2 0 )  2 - -~]  =0,  --~-= sin20 

where k is constant. If 0(1) possesses a stationary (minimum) value 00 say 
(~0) ,  equation (6.1) yields an expression for dq~/dl at 0 =  00, which can be 
equated to the corresponding expression in (6.2) evaluated at the same 
point. For k ~ 0  we deduce 

k=(Yo/a)sinO o (6.3) 

where 

Y0 = ( 1 - 0/2 sin 2 0o ) - 1/2 (6.4) 

1The latter result follows from equation (6.8). 
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Eliminating dO~d! from the two equations in (6.2), integration of the 
equation for 0 gives 

cos 0 = cos 0 o cos(Tol/a) (6.5) 

where, for convenience, arc length is measured from 0 = 0 o. Integration of 
the equation for q,, with initial condition ~=4~0 when O= 0 0, yields the 
corresponding solution 

sin0cos[q~- ~0 + a2('/ol/a)sinOo] = sin00 cos(Tol/a ) (6.6a) 

sin 0 sin [r - q~o + a2(70l/a)sin 00 ] = sin(7o//a) (6.6b) 

In these equations it is assumed that l is a signed length, increasing in the 
direction of increasing r It should be noted that the equator, described by 

0 = 0 0 = ~r/2, r  qao= (1 - ot2)l/2l/a (6.7) 

is a special case of the general solution; polar geodesics on the other hand 
are singular solutions for which k = 0, and are polar great circles repre- 
sented by 

cosO=cosl/a, q~-r or 7r (6.8) 

Clearly these solutions are the spatial analogs of the solutions for 
space-time geodesics in equations (3.11)-(3.13), the variable ~[ol/a playing 
the same role as o~t/a. Eliminating Tol/a from equations (6.5) and (6.6), 
the general spatial geodesic (excluding the equatorial solution) may be 
expressed in the alternative form 

r  ~o = -+ [ cos- l(tanOo/tanO) - a 2 sinOocos-l(cosO/cosOo) ] (6.9) 

which is the analog of equation (3.14). A free particle or photon can thus 
follow a spatial geodesic route only if a = 1 and if a 2 sin Oo=toa/,5; this 
would require 6 =  c(a sin 00)-l, a condition plainly impossible to fulfill 
Hence the locus of points traced out by a free particle or photon on the 
surface of a rotating sphere does not coincide with a spatial geodesic, 
except of course for the special case of an equatorial orbit. 

It is apparent from equation (6.9) that, starting from (Oo, q~o) and 
proceeding along the spatial geodesic in either direction, the equator is first 
intersected at points satisfying 

~-- dpo---- ___ l~r (1-  a2 sinOo) (6.10) 
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and that, necessarily interpreting cos-~ as a multivalued function which 
continuously increases in value as we move around the sphere, further 
intersections of the equator occur when q~-q,0 is an odd integer times the 
right-hand side of (6.10). The spatial geodesic will be closed if, after n 
complete orbits in the 0 sense, the change in q~ is m21r (where m and n are 
integers), i.e., if 1 - tx 2 sin 00 = m/n .  Otherwise the spatial geodesic never 
closes. 

The previous paragraph reveals the existence of multiple geodesic 
paths (in the sense, at least, of solutions to the geodesic equation) connect- 
ing pairs of points on the sphere. Consider for example two points on the 
equator. Equation (6.10) shows that the angular displacement in the q~ 
direction between two successive crossings of the equator by a spatial 
geodesic is never less than "rr(1--ot2). Suppose then that the angular 
separation Aq~ for our two fixed points satisfies 

Aq~ <rr, r <  Aq~ < r + l  (6.11) 
~r(1 - a 2) 

where r is a positive integer or zero. Discounting paths involving multiple 
revolutions round the sphere and paths which join the two points "the long 
way round," there will be r + 1 distinct paths between them which are 
solutions of the geodesic equation. One of these is the equatorial route, 
alol.g which the intervening distance is 

/o = aAq)(1 - a2) - 1/2 (6.12) 

The others may be parametrized by an integerj  ( j =  1,2, . . . .  r), where j - 1  
is the number of times the path intersects the equator between the end 
points. For each value o f j  there will be a separate value of the parameter 
0 o, 0oj say, obtained from 

Aeo=jvr(1 -- a2sin0o/), j =  1,2 . . . . .  r (6.13) 

Equation (6.5) implies that the distance along the geodesic path between 
each successive pair of equatorial intersections is era(1 - a 2 sin 2 0o) 1/2, and 
so the total distance between our two points along this route is 

/j =jTra(1 -- a2sin2Ooj) l/z, j =  1,2 . . . . .  r (6.14) 

An algebraic calculation now shows that lo>l 1 and that /j>/j-1 for 
j = 2, 3 . . . . .  r. (Alternatively the latter result can be achieved by examining 
the derivative of / j  with respect to j ,  treating j as a continuous variable.) 
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Thus the shortest distance between two points on the equator is obtained 
by following the equatorial route between them if Ar <~r(1- a2); and by 
following the "one-hop" geodesic route between them if Aq~ lies outside this 
range. 

More generally, it would be useful to extend this analysis to two 
arbitrary points on the sphere, and to be able to identify the geodesic 
which provides the shortest distance between them. We are not able to give 
a complete solution to this problem, but we have devised the following 
procedure which will allow the geodesic paths of greatest interest to be 
ascertained and examined, for any choice of end points. We begin by 
calculating the various allowed values of the parameter 80, for fixed end 
points, similar to the procedure outlined in Section 4 for space-time 
geodesics. Here we can make use of the analogy between the solutions of 
the spatial and space-time geodesic equations and simply write down 
equations that correspond to the time-of-flight equation (4.2) and equation 
(4.4) for sinS0; alternatively, these equations can be proved by eliminating 
~0 from equations (6.5) and (6.6), having first inserted the coordinates of 
the end points. By either route we find 

COSe = COS OlCOS 82 -1- sinOisin82 COS(t~2-- t~l -I- ot2esin8o) (6.15) 

sin8o = sinSl sin82 sin(~2- ~l +ctEe sinOo)/sine (6.16) 

where 

e = 70(/2- ll)/a (6.17) 

and l 2 -  l I is the distance between the end points along the route char- 
acterized by 80. At this stage, however, the analogy breaks down: for fixed 
a, equation (6.15) cannot be used to find the allowed values of e from 
knowledge of the coordinates (Sl,~t) and (82,q~2) alone, due to the ap- 
pearance of the extra sin 80 factor on the right-hand side. The best way to 
proceed is to combine equations (6.15) and (6.16), yielding 

sin 2 80 sin 2 e = sin 2 O lsin 2 82 - (cos e - cos 81cos 82) 2 (6.18) 

This provides an expression for sin 8 0 in terms of e, which on substitution 
into equation (6.15) yields a single equation for the unknown quantity e. 
Having solved this equation numerically, we then use equations (6.18) and 
(6.17) to calculate the corresponding solutions for sin 8 o and l 2 -  l 1. 

Whatever the values of ~2, ~l, or e, we see from equation (6.15) that 

cos(81 + 82) < cose < cos(81 - 82) (6.19) 
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so that the allowed values of e are confined to the same bands of possible 
values as for ~(t2-t])/a in the corresponding problem for space-time 
geodesics. Defining 

f(e) = cos e - cos 01 cos 02 - sin 01 sin 02 COS((/) 2 -- ~1 + 0~28 sin 0o) (6.20) 

it is readily confirmed that f(e) >10 at the upper limit for cos e and f(e) < 0 
at the lower limit. Since f(e) is a continuous function, there is at least one 
root of the equation f(e)= 0 within each band, and this can be found by 
direct numerical evaluation of f(e). It should be noted that, because of the 
presence of the factor 3'0 in equation (6.17), an ascending sequence of 
allowed values of e does not necessarily generate the allowed values of 
l 2 -  l 1 in correct ascending order. Nevertheless, since ~0 is never greater 
than ( l - a 2 )  -1/2, the allowed values of e in the higher bands must 
eventually correspond to paths involving multiple revolutions around the 
sphere, so that the search for the geodesic solution which gives the 
minimum distance is never likely to be protracted. Indeed we conjecture 
that the shortest path between two points always corresponds to a solution 
for e in the first band, partly because this is certainly true in the two 
extreme cases where ~1 ~-(/~2 (i.e., a polar geodesic with / 2 - l 1 = al9 2 -/91[ as 
the first band solution) and where t~l =~2"[-'7T [a polar geodesic with 
12-l]=a• as the first band solution]. We also 
conjecture that there is only one solution to f(e)= 0 per band, although this 
is supported only by practical experience in the few cases which we have 
explicitly investigated. 

i 

(a) (b) 

Fig. 4. Spatial geodesics jolnlng A and B of Figure 1 with (a) affi0.2 and (b) affi0.8. 
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Having determined 0 o and l z - l 1 by the above procedure, the calcula- 
tion of the individual values of q~0, li, and 12 is exactly analogous to that 
described in Section 4 for the determination of ~0, q, and t2, and will not 
be further discussed. Figure 4 displays spatial geodesics, represented as for 
Figure 1, passing through the points ( t r / 3 , -  ~r/6) and (~r/3,~r/6) for 
a = 0.2 and a = 0.8. In each case the geodesic shown is that which gives the 
shortest distance between the end points. For a =0.2, the geodesic path 
does not differ very much (locally, at least) from a great circle, but a 
substantial difference may be noted for the higher value of a. 

7. EMBEDDING THE SPHERICAL GEOMETRY IN A FLAT 
3-SPACE 

If we define 

p = a sin0(1 - a2 sin20)-1/2 (7.1) 

the line element given by equation (6.1) assumes the simple appearance 

d l  2 = a2dO 2 + p2dq,2 (7.2) 

We can regard this as one form of the line element of a surface of 
revolution z =z(p) embedded in a Euclidean 3-space in which (p,q~,z) are 
cylindrical polar coordinates. Thus if we altematively write 

d 1 2 =  dz2 + ripE+ 02d4~ 2 (7.3) 

then combine the expressions for dl  2 and differentiate equation (7.1) with 
respect to 0, we find the following expression for z in terms of the 
parameter 0: 

~r/2[ COS2 0 ] 1/2 
z = a (  1 --  dO (7.4) 

-'o (1 -- a2sin20) 3 

The selected boundary condition is that z --0 corresponds to the equatorial 
plane of the sphere (0= 7r/2). Elimination of 0 between equations (7.1) and 
(7.4) yields the surface z--z(o). By construction, this surface has the same 
intrinsic geometry as the surface of the rotating sphere. 

In order for the embedded surface to exist for all relevant values of 0 
(0 < 0 < er), it is necessary that the right-hand side of equation (7.4) be real 
throughout this range. Inspection of the integrand shows that it is always 
real if ct2< 1/3, but becomes complex in the vicinity of 0 = 0  and 0=~r for 
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a2>  1/3. This means that parts of the embedded surface near the poles 
cease to exist as ct 2 increases beyond 1/3, and as a--~l the angular fraction 
of the rotating spherical surface represented shrinks to zero. 

It is possible to express the right-hand side of equation (7.4) as a 
rather complicated combination of elliptic integrals of the first, second, 
and third kinds, but  it is simpler to carry out the integration numerically 
for any particular value of a. Figure 5 shows the results for a2--0, 1/12, 
and 1/3, where in each case z / a  is plotted against p/a ,  the dotted lines 
indicating the values of the parameter  0 at 9 ~ intervals. As expected, the 
embedded surface for a 2 = 0  is itself spherical, but a s  ~ 2  increases it 
becomes progressively more oblate. For a 2 = 1 / 3 ,  the curvature of the 
surface at 0 = 0 and 0 = r is zero, as the figure suggests and as a calculation 
based on equation (6.1) confirms. It is worth emphasizing that the variable 
0, though it retains its meaning as a spherical polar coordinate in the frame 
of the rotating sphere, is not a spherical polar coordinate in the Euclidean 
3-space in which the surface z(p) is embedded. In the latter space its main 
significance, as equation (7.2) and Figure 5 demonstrate, is that it varies 

l'II oc2=0 
1.0 

z/a 

o.9- 1/12 

~ = o.7- I/3 

,f,/ 

f /f:;;:/ ,': ,/,' 
..:,. 

0,6- 

0.5- 

0.4- 

iill ii !ii:  
0.1 " i 

o oi~ o!~ o13 o!4 o!5 o!6 o!z o!8 o!9 1 ~!, I ~  ~13 

p/a 

Fig. 5. Cross section z= z(p) of embedding surface for z > 0. The embedding surface for 
negative z is the mirror image of this. 
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linearly with distance traveled on the embedded surface along any path for 
which d~=0 .  Points in the Euclidean 3-space that do not lie on the 
embedded surface have no physical significance. 

The embedding is useful in providing a visual appreciation of some of 
the features of the spatial geometry of a rotating sphere discussed previ- 
ously. Consider again, for example, the problem of finding the shortest 
path between two points on the equator, and suppose we employ a 
stretched string to identify paths that are solutions of the spatial geodesic 
equation. It is intuitively obvious, by reference to the embedding displayed 
in Figure 5, that a stretched string joining two points on the equator by 
the route of minimum distance will itself lie on the equator provided the 
angular separation (in the ~, direction) between them is small. As the 
angular separation increases, however, the equatorial configuration will 
eventually become unstable and the string, if dispaced slightly, will slip 
over the surface until it reaches the configuration corresponding to the 
alternative (stable) geodesic path wholly within one of the two hemispheri- 
cal surfaces. 
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